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Abstract

Two decades of research have proven the relevance of ion

channel expression for tumor progression in virtually every

indication, and it has become clear that inhibition of specific

ion channels will eventually become part of the oncology

therapeutic arsenal. However, ion channels play relevant roles

in all aspects of physiology, and specificity for the tumor tissue

remains a challenge to avoid undesired effects. Eag1 (KV10.1)

is a voltage‐gated potassium channel whose expression is very

restricted in healthy tissues outside of the brain, while it is

overexpressed in 70% of human tumors. Inhibition of Eag1

reduces tumor growth, but the search for potent inhibitors for

tumor therapy suffers from the structural similarities with the
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cardiac HERG channel, a major off‐target. Existing inhibitors

show low specificity between the two channels, and screenings

for Eag1 binders are prone to enrichment in compounds that

also bind HERG. Rational drug design requires knowledge of

the structure of the target and the understanding of

structure–function relationships. Recent studies have shown

subtle structural differences between Eag1 and HERG chan-

nels with profound functional impact. Thus, although both

targets' structure is likely too similar to identify leads that

exclusively bind to one of the channels, the structural in-

formation combined with the new knowledge of the functional

relevance of particular residues or areas suggests the possi-

bility of selective targeting of Eag1 in cancer therapies. Further

development of selective Eag1 inhibitors can lead to first‐in‐
class compounds for the treatment of different cancers.

K E YWORD S

arrhythmia, cancer, Eag1, HERG, potassium channels, rational drug
design

1 | INTRODUCTION

Potassium channels play key roles in cellular excitability, but they also have many other functions and are often critical for

many cellular processes.1 It is not surprising that they are also crucial in a pathological context, like for tumor progres-

sion.2 Eag1 is a paradigmatic example of this tumor relevance, as its expression is dysregulated in a majority of human

cancers.3 At the same time, normal tissues outside of the brain do not express the channel. Eag1 would thus be an

excellent candidate for tumor therapy, but it belongs to the same family (KCNH) as the cardiac channel HERG. Besides

their radically different electrophysiological properties and functions, both channels share a similar structure, and

therefore affinity for almost all known compounds. The importance of HERG for cardiac physiology poses a severe safety

concern. In this review, we will describe in detail the structure, function, and pharmacology of Eag1, and highlight which

aspects that distinguish Eag1 and HERG can serve to design compounds that block Eag1 while preserving HERG.

The KCNH family of voltage‐gated potassium channels was first described in Drosophila ether à go‐go mutants, which

show altered excitability, resulting in leg shaking under ether anesthesia.4 The founding member of the family was termed

after the mutation, eag.5–7 Initial screening of the mouse and human genomes identified aneag ortholog in the mouse, but

in humans, only a paralog with a sequence distant enough to be classified as a related but independent gene was found.8

This second gene was named human eag‐related gene (HERG). The discovery that mutations in HERG cause a form of

congenital long QT syndrome (LQT),9,10 a malignant arrhythmia that can result in torsade de pointes (TdP), reentry, and

sudden cardiac death, shifted most of the interest on the family towards this member in particular. Moreover, a large

fraction of episodes of drug‐induced LQT, frequently in carriers of mutations in other ion channels that prolong the QT

interval, are due to the inhibitory effects of drugs on HERG. HERG inhibitors are so numerous that authorities started

requesting proof of lack of activity on a molecule in the approval process.11–13 In preclinical safety assessment, the drug

safety threshold is usually expressed as the ratio of the IC50 value for HERG inhibition to the maximum therapeutic free

concentration (Cmax
free) of the drug.14 To reduce the risk of TdP and LQT, Gintant proposed as appropriate a safety

184 | TOPLAK ET AL.
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margin threshold of 30 and 45, respectively.15 These safety margin predictions have been studied several times in recent

years. They have been shown to be reasonable, but definitely not perfect predictors of TdP appearance.16 When Cmax
free

is not available, i.e. in the early stages of drug discovery, an absolute HERG potency of IC50 values less than 10μM is

suggested to have a 63% probability that the compound would cause a QT elongation in clinical trials. On the other hand,

compounds with IC50 values larger than 10 μMare suggested to have 87% probability of not prolonging the QT interval.17

Later on, it became evident that the human Eag1, besides its activity in the central nervous system, plays a

relevant role in tumor development and progression in virtually every oncological indication.18,19 Importantly, in

tumors showing ectopic expression of the channel, inhibition of Eag1 leads to reduced tumor growth, turning the

channel into an attractive therapeutic target.20,21 Unfortunately, most of the known blockers of Eag1 have an even

higher affinity for HERG, leading to cardiac risk. Although this risk could be minimized and made assumable, the

only genuinely safe blockers would be those that leave HERG unaltered. The knowledge acquired in the last years

of the structure and function of both Eag1 and HERG makes it feasible to reach this goal through rational design.

The terminology of ion channels is often confusing, and the KCNH family is an extreme case. The gene family

consists of eight members in three subfamilies, initially named Eag, Herg, and Elk (eag‐like). The IUPHAR re-

commended terms,22 probably the least equivocal, are KV10.1 and KV10.2 for the Eag,s, KV11.1 to 3 for the Herg,s,

and KV12.1 to .3 for the Elk,s. The HUGO nomenclature23 assigned the name KCNH (voltage‐gated potassium

channels, subfamily H) to the genes for all members. KCNH1 encodes for Eag1 and KCNH2 for HERG1. KCNH5

encodes for Eag2, while KCNH6 and 7 encode HERG2 and 3, and ELK channels are KCNH8, KCNH3, and KCNH4.

The subjects of this review are KV10.1 and HERG, that is, Eag1 and HERG1. We will use the “classical” nomen-

clature throughout the text, Eag1 and HERG because those names are most familiar for the community and least

prone to generating confusion. We will only use their gene names, KCNH1 and KCNH2, when necessary and refer

to the whole family as KCNH.

2 | EAG1 POTASSIUM CHANNEL: AN OVERVIEW

2.1 | Structure

Although the Drosophila eag channel's amino acid sequence was immediately recognized as compatible with a

potassium channel monomer,6 with an array of six transmembrane segments (S1–S6), several substantial differ-

ences with known potassium channels became evident already at the time. On the one hand, the large intracellular

domains displaying a PAS domain in the N‐24 and a cyclic nucleotide‐binding domain in the C‐terminus (which is

occupied by a ligand from the same protein and not by cyclic nucleotides24) represent a characteristic feature of

KCNH channels.25 On the other hand, although the channels are reasonably selective for K+, the “signature

sequence” at the selective filter of Shaker‐type channels (GYGD)26 is different in this family (GFGN). Moreover, the

“kink” (residues PVP) at the S6 segment,27 which are essential for the gating of Shaker‐type channels, is also absent

inKCNH channels. This structural difference, along with the very short S4–S5 linker, already suggested substantial

mechanistic differences in the voltage‐dependent gating of this channel family.28,29 In other voltage‐gated chan-

nels, it is assumed that the movement of the S4 segment in response to depolarization conveys through the S4–S5

linker to the gating machinery acting as a rigid mechanical lever. This is possible because of the close interaction

between S4–S5 and the S6 segment of a different subunit, a feature known as “domain swapping.” In channels of

the KCNH family, the voltage sensor of a subunit interacts with the pore domain of the same subunit (thus, they are

non‐domain‐swapped channels). This notwithstanding, the intracellular domains are “swapped,” and the

N‐terminus of one subunit interacts with the C‐terminal domain of a neighboring one example, Barros et al.30 These

differences result in a very complex gating process whose description exceeds the scope of the present review.

Although divergent from other families of voltage‐gated K+ channels, the amino acid sequence within

the transmembrane segments is conserved among the family members (see e.g., Barros et al.30 and

TOPLAK ET AL. | 185
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Bauer and Schwarz31). The two channels that we intend to compare show moderate homology between them,

although their functional properties are dramatically different. HERG shows larger intracellular domains, but the

family's major hallmarks can be recognized in both Eag1 and HERG. The distal N‐terminus displays a flexible

stretch of 11 residues that are relevant for gating.32 Downstream of this stretch, a PAS (Per–Arnt–Sim) domain,

typically related to redox processes in other proteins, is conserved in the family. It was the first PAS domain

identified in eukaryotic cells,33 but its function is still incompletely understood. The core of the channel,

S1–S6 segments, shows, in general, the classical structure of voltage‐gated channels, except for the lack of domain

swapping and a very short S4–S5 linker, as described above. The C‐terminal cytoplasmic part of the channel

presents a cyclic‐nucleotide binding homology domain (CNBHD) and the segment between this domain and the end

of S6 is called C‐linker, which is relevant for gating; close to the end of the sequence, a tetramerizing coiled‐coil
participates in selective tetrameric assembly.34 Finally, the C‐terminus of the channel presents a ciliary localization

signal (see below). Initially proposed as a nuclear localization signal (both types of signals are exchangeable),

because functional Eag1 channels are also detected at the inner nuclear membrane,35 where the channel traffics

from the plasma membrane. However, the localization at the nuclear envelope was independent of the nuclear

localization signal and happened in channels devoid of such a signal.

The structures of homotetrameric Eag1 channels were solved using cryo‐EM.36,37 The first structure (PDB:

5k7l, resolution: 3.78Å) was a rat Eag1 (Figure 1) truncated in the C‐terminus (removal of 114 residues) and bound

to the inhibitor complex of calmodulin and Ca2+ (Ca2+–CaM). The electrical field in the experimental setup was

0mV, and the channel should be open at that potential; the voltage‐sensing parts of the protein are in the active

conformation. Nevertheless, the channel was in a nonpermeant conformation because binding of four Ca2+–CaM

to the cytoplasmic domains induces the closing of the channel. The exact mechanism of channel closure by

Ca2+–CaM is not entirely understood. Still, a recent cryo‐EM structure of a mutant Eag1 (PDB: 6PBY, resolution:

3.67Å) lacking residues 3–13 suggests that Ca2+–CaM stabilizes interactions between cytoplasmic domains and

voltage sensor domain (VSD) that maintain the channel closed.32

Analogously to other KV channels, four VSDs form the body for sensing changes in the membrane potential. Each

VSD comprises four transmembrane alpha‐helices (segments S1–S4) (Figure 1, VSD in orange). S4 carries six positively

charged residues responsible for sensing the membrane potential and is linked to S5 and S6, which constitute the pore

domain (PD, Figure 1 in yellow) through the S4–S5 linker. The PD shows a water‐filled cavity (central cavity) and

selectivity filter (SF) (Figure 1C). SF is the narrowest part of the pore and responsible for the selective flow of potassium

ions. The surface of the SF is lined with oxygen atoms that coordinate K+ ions during permeation37 (Figure 1C).

In the cryo‐EM structure, S4 is in the “up” or activated position (displaced towards the extracellular side)

corresponding to a membrane potential at which the channel is in the open state. A similar S4 voltage sensor

position is observed in the solved cryo‐EM structure of the HERG channel (PDB: 5va1, resolution: 3.7Å). HERG

channel structure was obtained using a truncated construct that is missing 249 residues in the N‐terminus and 134

residues in the C‐terminus.36 The truncation results in a 20‐mV shift in the threshold voltage activation compared

to wild‐type HERG, and the structure shows the voltage sensor in the activated position with the channel pore

open, while that of the Eag1 structure is closed. The most evident difference between the cavities in Eag1 and

HERG structures is the appearance of a hydrophobic pocket just below the SF that extends out of the pore cavity

(length ~11Å, diameter ~8Å, Figure 1C). In the closed Eag1 structure, those pockets are tightly sealed.36,37 None of

the channels with known structures had those pockets, and therefore they could not be modeled into homology

models of Eag1 and HERG before their structures were described.40,41 This is relevant because the cylindrically

shaped pocket could accommodate a substituted aromatic ring, a known feature of most pharmacophore models

reported for HERG blockers (Figure 1E,F). Another common element in the inhibitors is a positively charged

moiety, usually represented as a (substituted) amino group in Eag1 and HERG inhibitors.38,39,42 A positively

charged group could be accommodated in the negative electrostatic potential located in a cross‐section of all four

pockets right below the entrance into the SF, or it could form cation‐π interactions with aromatic rings lining the

cavity (Figure 1C, in red mesh).43,44 The residues surrounding the pocket are in both channels the same, and their

186 | TOPLAK ET AL.
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location varies highly only with side chains of residues F656 (HERG) or F468 (Eag1).36,37 Whether or not the

hydrophobic pocket remains closed and what is the orientation of F468 in Eag1 when the channel is in the open

conformation are still unanswered questions. Yet, the existence of many common blockers and the effects of F468

mutations allow predicting that the pockets will be practicable also in the open Eag1.40

In addition, recent studies highlighted that the cytoplasmic domains (PAS, C‐linker, and CNBHD) are also tightly

involved in the modulation of KCNH channels gating (reviewed in Barros et al.30). These domains are closely bundled

together (in a domain‐swapped fashion) just below the VSD in the proximity of S4–S5 linker36,37 (Figure 1D). The

displacement of S4 upon depolarization would allow interaction of the N‐terminal PAS loop (residues 1–9 of Eag1) with

the C‐terminus of S4 (Asp 342), stabilizing the depolarized conformation of the VSD, and at the same time interfering with

the interaction between the C‐terminus of the PAS loop (residues 10–13) and two tyrosine residues, one just below S1

(Tyr 213) and in the CNBHD (Tyr 639). These interactions would play mainly a regulatory role of gating since an Eag1

channel where most of the cytoplasmic N‐ and C‐termini have been deleted is still able to gate in a voltage‐dependent
manner.

F IGURE 1 Structure of Eag1 (PDB: 5k7l). (A) Top view with one subunit colored: PAS domain in red, VSD in
orange, PD in yellow, SF in gray, C‐linker in green, and CNBHD in blue. (B) Side view with intrinsic ligand
represented in brown spheres. (C) Hydrophobic pockets in gray mesh and central cavity in blue mesh and red mesh
below SF. The red mesh of the central cavity represents its more negative electrostatic potential. (D) PAS loop
without the first nine residues oriented toward the S4–S5 linker; residues important for PAS loop interactions are

represented with sticks. (E) Cavalli et al.'s38 HERG pharmacophore model. (F) Ekins et al.'s39 HERG pharmacophore
model. CNBHD, cyclic‐nucleotide binding homology domain; PAS, Per–Arnt–Sim domain; PD, pore domain; SF,
selectivity filter; VSD, voltage sensor domain [Color figure can be viewed at wileyonlinelibrary.com]
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The CNBHD does not bind cyclic nucleotide as the cyclic nucleotide‐binding domain of other channels. Instead,

the binding site hosts the side chains of residues Y699 and L701 (called the “intrinsic” ligand) that imitate the

binding of cyclic nucleotides (Figure 1D). In the closed Eag1 and open HERG structures, the intrinsic ligand is in

close proximity to the PAS domain of the neighboring subunit, possibly representing the “bound” state.36,37 At least

in ELK channels, binding of the intrinsic ligand appears to be a dynamic process, since a peptide with the same

sequence competes for the binding with the native intrinsic ligand. Mutagenesis studies on the intrinsic ligand of

Eag1 revealed its importance in promoting activation of the voltage sensor and stabilizing the open pore. However,

how the intrinsic ligand communicates with the VSD is still not completely understood.45,46

As stated above, the available cryo‐EM structures of Eag128,32 were determined with calcium–calmodulin

(Ca2+–CaM) bound, which overrides the activation of the voltage sensor and induces closure of the gate. Ca2+–-

CaM binding induces a rotation of the intracellular domains of the channel,28 which distorts the structure and

makes a comparison between HERG and Eag1 in this area very difficult, since we cannot distinguish what dif-

ferences are due to Ca2+–CaM and what are true structural differences between the channels. A structure of Eag1

in the absence of inhibition by Ca2+–CaM should allow for such studies, and predicting which areas and residues

can allow selective binding to either one of them. It is reasonable to assume, however, that the cytoplasmic

domains of both channels are functionally similar, since a chimeric channel carrying the PAS domain, C‐linker, and
CNBHD of HERG on an Eag1 background results in behavior not massively different from wild type Eag1.28

The mature Eag1 is core glycosylated on Asn‐388 and complex glycosylated on Asn‐406. Proper glycosylation
is required for efficient transport to the plasma membrane, but also enzymatic removal of glycosylation causes a

large reduction of the peak current, indicating that the presence of sugar moieties impacts the functional prop-

erties of Eag1 channels at the plasma membrane.47 Whether or not this is also the case for its pharmacological

properties remains to be investigated.

2.2 | Biology and physiological function

2.2.1 | RNA expression and role

KCNH1 is abundantly expressed in the central nervous system (CNS), while undetectable in most peripheral tissues

except testes and adrenal gland.18,19 In contrast, the expression patterns of the other members of the KCNH family are

much less restricted. In the CNS, abundant KCNH1 RNA and Eag1 protein have been described in the olfactory bulb,

cerebral cortex, hippocampus, hypothalamus, and cerebellum of adult rats and humans.48 Potassium channels in general

play key roles in many neural functions, such as regulating the resting membrane potential, generation and shaping of

action potentials, regulation of spiking frequency, modulation of backpropagation in dendrites, control of synaptic po-

tentials, and their integration in dendrites.48 Voltage‐dependent potassium channels of the KCNH family on the other

hand play roles in cardiac repolarization, cellular proliferation, tumor growth, and cellular excitability. More specifically,

membrane depolarization causes the opening of these channels and conduction of potassium ions outside the cell,

resulting in repolarization and hyperpolarization of the membrane.49 The physiological role of Eag1 in mammalian neurons

remained elusive for a long time. Knockout mouse models indicated that Eag1 is not crucial for development in mice.50

Animals expressing a truncated form of Eag1 that lacks the transmembrane domains and cannot act as an ion channel

showed no detectable anatomical or histological changes in the brain, nor alterations in lifespan, reproduction, or de-

velopment. The fetal human brain does not express detectable RNA,18 and also in rodents, expression starts only at birth

and rises until adulthood. In zebrafish, however, Eag1 knockout disrupts early embryonic development and causes early

mortality.51 This striking difference could be explained by the fact that the knockout mice still conserve the intracellular

domains of the channel. There are at least four KCNH1 transcripts generated by alternative splicing in mammals.52 The

full‐length Eag1a is the most common splice variant and differs from Eag1b by 81 base pairs, resulting in a shorter exon 6.

Both isoforms have similar electrophysiological properties.53 E70 is a variant that can also be found in the normal brain

188 | TOPLAK ET AL.

 10981128, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ed.21808 by M
ax-Planck-Institut fur M

ultidisziplinare N
aturw

issenschaften, W
iley O

nline L
ibrary on [23/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



but lacks all transmembrane segments and a part of the PAS domain. E65, another splice variant, can be found in

neuroblastoma and melanoma cells and also lacks all transmembrane segments and a part of the PAS domain. None of the

variants can form an ion channel, but both can interact with Eag1a, reducing the whole‐cell current. In the absence of

Eag1a, E65 can activate cyclin‐dependent kinase 1 when expressed in Xenopus oocytes. In knockout mice, both short

splice variants could still be present.

Along with the lack of anatomical changes, knockout mice showed only mild hyperactivity and longer‐lasting
haloperidol‐induced‐catalepsy. In the parallel fiber‐Purkinje cell synapse of Eag1 knockout mice's cerebellum,

repetitive stimulation caused accumulation of calcium and consequent increase in a synaptic release that resulted

in robust potentiation.54 Therefore, the physiological function of Eag1 would be to limit excitability at high

frequencies of stimulation in mature neurons. This function would fit the peculiar electrophysiological properties of

the channel (see below) and explain the hyperexcitability in behavioral experiments.55

Besides its expression in the CNS, Eag1 is also to a limited extent‐ expressed in peripheral tissues, such as

myoblasts, the female and male reproductive system, and the adrenal gland. In myoblasts, Eag1 is transiently

expressed during differentiation. Myoblasts are precursor cells that will fuse during myogenesis to form adult

muscle cells. Myoblast fusion is a complex process involving cell‐cycle withdrawal, cell–cell interactions, adhesion,

alignment, and final membrane fusion to form the multinucleated skeletal muscle fiber.56 There is little or no Eag1

expression in undifferentiated myoblasts, but the expression is activated and reaches a peak immediately before

fusion.57 Activation of Eag1 current coincides with the cell‐cycle arrest.56 Eag1 can also be detected in the female

reproductive system, specifically in epithelial cells in the endocervix and endometrium, particularly in secretory

activated endometrial glands. In the normal human placenta, Eag1 was found to be strongly expressed in syncy-

tiotrophoblast and the vascular endothelium. Similar to its transient expression in myoblasts, also here Eag1 is

likely involved in the proliferation and/or fusion of trophoblasts.18,19,58 As described above, Eag1 can be detected

in the female reproductive system, more specifically in epithelial cells in the endocervix and endometrium. During

pregnancy, the cervix undergoes significant remodeling by an increase of proliferation and decrease of apoptosis.

Ramírez et al.59 reported the presence of Eag1 in the cervical cells of 100% of the tested pregnant women and 26%

of the tested nonpregnant women. As human pregnancy provides an estrogen and progesterone‐enriched en-

vironment for cervical cells, this indicates a possible regulation of Eag1 by these hormones.

Besides expression in myoblasts and the female reproductive system, Eag1 was also detected in the adrenal

gland and the male reproductive system, specifically in the spermatogenic cells.19 Finally, Eag1 was also detected in

mesenchymal stem cells. A reduction of adipogenesis and osteogenesis was observed in human mesenchymal stem

cells infected with KCNH1 short hairpin RNA, suggesting that Eag1 participates in the regulation of adipogenic and

osteogenic differentiation and might be important in maintaining bone marrow physiology.49,60

The limited detection outside of the CNS can be due to the channel's tightly controlled time of expression. All cases

described in the last paragraph correspond to cellular events restricted in time and closely related to cell‐cycle control.

Other normal cells show the channel's expression, but only during a limited period through the G2 and M phases of the

cell cycle.61 The master regulator of cell cycle progression, the transcription factor E2F1, binds to the promoter of KCNH1

and induces its expression at the start of G2. Quiescent cells or cells in G1 or S are the vast majority of cells in tissues, and

therefore the channel is not detected at the tissue level, but it can be demonstrated in cells rapidly proliferating (like in the

colon crypts) or arrested in G2 (such as secondary spermatogonia). For example, this temporal regulation is lost in tumor

cells, which exhibit sustained expression (although oscillating quantitatively along the cell cycle).61

2.2.2 | Biophysical properties of Eag1

Eag1 is electrophysiologically characterized by a slow voltage‐dependent activation which results in apparently

noninactivating currents.55,62 The activation properties of Eag1 are reminiscent of the Cole‐Moore shift observed

in for instance squid axons63; although the original description probably corresponds to a different phenomenon,64
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the term Cole–Moore shift is still the usual one in the field for describing the activation behavior of Eag1. Upon

mild depolarizations, Eag1 activates slowly. However, the time constant of activation is strikingly dependent on the

prepulse potential in which a more depolarized membrane potential gives rise to a faster Eag1 activation. The

activation process of most KV channels displays such a holding potential dependency of the activation rate, but in

other channels what is observed is a shorter delay to activation, rather than faster kinetics. Notwithstanding, the

orders of magnitude change in activation rate for Eag1 is so distinctive that it allows characterizing this channel in

native preparations.18,65 For the family of KV channels, gating is the resultant of a sequence of structural changes

in response to depolarization. In Eag1, these conformational changes do not require a direct connection between

the pore domain and the voltage sensors.29 Indeed, a range of voltage‐dependent transitions between non-

conducting channel states contributes to the activation characteristics of Eag1. Individual subunits independently

influence the time constant of activation for this channel.66

The distinct electrophysiological properties of Eag1 provide an understanding of the physiological function of

Eag1 in neurons. Although the specific function of Eag1 has been unknown for a long time, it is now clear that this

channel plays an important role in the control of neuronal excitability. A single action potential is insufficient to

activate the Eag1 channel since it requires profound depolarizing potentials over an extended time. Despite this, as

described above, this first single action potential will function as a prepulse and does alter the activation rate for

the subsequent stimulus.54 Thus, repetitive stimuli enhance the speed of activation and as such precondition Eag1

closer to activation, eventually resulting in channel activation. Eag1 hereby counterbalances the depolarization

since the Eag1‐mediated potassium flux will contribute to hyperpolarization of the neurons. This indicates that

Eag1 functions as a regulator for neuronal hyperexcitability during high‐frequency presynaptic transmission but

remains silent at lower frequencies.54,62

2.2.3 | Endogenous regulation Eag1 channels/signaling pathways

Many factors regulate Eag1, its trafficking, and its involvement in signaling pathways. Some of such interactions are

specific for Eag1 and have not been described for HERG, opening a possibility for differential intervention.

The best known and probably most relevant Eag1 interactor is Calmodulin (CaM), a highly conserved soluble

cytoplasmic protein that translates the rise of intracellular Ca2+ into a physiological response by modulation of a

plethora of target proteins. CaM consists of two N‐ and C‐ terminal Ca2+‐binding lobes connected by a flexible

helix. The flexibility of the helix allows it to adopt different conformations that depend on whether CaM is bound

to Ca2+ or bound to the target protein. The rise of intracellular Ca2+ above basal levels markedly reduces Eag1

current67 through CaM,68 which binds to Eag1 via three sites, one binding domain at the N‐terminus (BD‐N) and

two binding domains at the C‐terminus (BD‐C1 and BD‐C2). Mutations of the three sites disrupt inhibition in the

presence of high Ca2+.68–71 In in vitro binding experiments, BD‐C2 and BD‐N are more crucial for calmodulin

binding to Eag1, while BD‐C1 is more dispensable.69,71 BD‐N lies after the PAS domain, while BD‐C1 & BD‐C2 are

located after the CNBHD. The available cryo‐EM structure of Eag1 includes bound CaM and shows the intricacy of

the interaction.37 (Figure 2). Four CaM molecules form a complex with the ion‐conducting subunits, in which the

N‐lobe of CaM interacts with BD‐N of one subunit, and the C‐lobe is positioned close to BD‐C2 from the opposite

subunit. All three binding sites for CaM are located in the proximity of the intracellular domains that form a ring

below the gate of the channel, formed by the four N‐and C‐termini, which interact with each other in a “domain‐
swapped” fashion. The N‐terminal PAS domain of one subunit interacts with the C‐terminus of the neighboring

subunit, and this interaction determines the gating behavior of the channels. Therefore, in the presence of CaM,

the intracellular domains of three of the four ion‐conducting subunits interact with each other either directly or

through CaM. Ca2+–CaM Calmodulin cross‐bridges opposite subunits, pulling together the PAS domain and the

CNBHD. This induces a rotation in the C‐linker and S6, closing the pore and obstructing the potassium flow, and

locks the channel in a closed state. Deletions in the intracellular domains of Eag1 either abolish the inhibition or
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even result in a potentiation of the current in response to Ca2+.72 The inhibition of Eag1 current can act as a

positive or negative feedback signal. In neurons, the rise of Ca2+ inhibits K+ efflux through Eag1, hence maintaining

the depolarized signal at the presynaptic membrane.73 In cancer cells, Eag1 promotes the entry of Ca2+ through

Orai1 to support cell survival, while the rise of Ca2+ inhibits Eag1 in a self‐terminating feedback loop.62

The interaction of 14‐3‐3Θ with Eag1 is reminiscent of that of CaM. It happens through both the N‐ and

C‐termini (the PAS domain and the CNBHD, respectively).14‐3‐3Θ suppresses Eag1 currents without altering

protein expression, surface trafficking, voltage dependence, gating kinetics or single‐channel conductance.74

14‐3‐3 isoforms also interact with HERG. It prevents internalization by protecting protein kinase A phosphor-

ylation sites from dephosphorylation, and thereby enhanced HERG current.75

K+ channel regulator 1 (KCR1) is a membrane protein believed to constitute a regulatory subunit of Eag1, as its

C‐terminus interacts with the C‐terminus of the rat Eag1. This association leads to an increase in Eag1 expression

and facilitation of the channel activation.76 KCR1 also shows functional interaction with HERG, though not by

direct interaction but by control of glycosylation (KCR1 is an α‐1,2‐glucoystrnaferase).77 Activation of mitosis‐
promoting factor (MPF), a complex of the regulatory cyclin B and catalytic subunit p34cdc2 in Xenopus oocytes

induces a reduction of Eag1 current expressed in oocytes. Still, no direct interaction has been documented.78

The expression of Eag1 at the plasma membrane is very dynamic, with an internalization rate of 2%/min.79

Several proteins participate in the trafficking of Eag1. Epsin, a protein present in presynaptic nerve terminals and

involved in endocytosis and cell cycle progression, binds directly to Eag1 and slows down the opening of the

channel, resulting in a decreased open probability.80 Rabaptin‐5, another binding partner of Eag1 that interacts

with Rab5 and Rab4, which are involved in early endosome fusion and membrane recycling respectively, partici-

pates in the recycling rates of Eag1 and maintaining Eag1 current density, suggesting a role for Rabaptin‐5 as a

molecular bridge between endocytosis and recycling.81 Golgi‐Associated PDZ And Coiled‐Coil Motif‐Containing
Protein (GOPC) interacts with the C‐terminus of Eag1 and leads to an increase in surface expression of Eag1

without influencing its electrophysiological properties. GOPC could act as a molecular switch determining the fate

of the channel after internalization in early endosomes, by increasing the recycling rate and leading to a net

increase in membrane expression.82 Cortactin (CTTN) interacts with the C‐terminus of Eag1 and increases Eag1

current, without modifying the electrophysiological properties of the channel. The loss of CTTN reduces the

abundance of Eag1 at the plasma membrane. Its overexpression does not increase the Eag1 current, indicating that

CTTN is involved in channel endocytosis and not in transport to the membrane. Actin cytoskeleton remodeling is

F IGURE 2 CaM interaction with Eag1 (viewed from the cytoplasmic side). Calmodulin interacts at the
boundary between Eag1 subunits with the N‐terminus of one subunit (green) and the C‐terminus of the opposing
subunit (blue). Notice that the intersubunit interaction occurs between the N‐terminus of one and the C‐terminus
of the adjacent subunit (yellow). CNBHD, cyclic‐nucleotide binding homology domain [Color figure can be viewed
at wileyonlinelibrary.com]
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essential for endocytosis; CTTN interacts with the actin cytoskeleton and plays a crucial role in endocytosis.

Therefore, it is hypothesized that the presence of CTTN stabilizes Eag1 on the membrane, while its absence

reduces the membrane residence by increasing Eag1 internalization.83 To our knowledge, none of these factors

show direct interaction with HERG, which appears to follow a different trafficking pathway towards the plasma

membrane. Many nonprotein factors are reportedly implicated in the regulation of Eag1.

Arachidonic acid interacts directly with Eag1 and increases current and causes a shift in the activation curve to

the left. As polyunsaturated fatty acids are the second messengers involved in many cell regulation processes,

arachidonic acid could contribute to the involvement of Eag1 in neuronal signaling and excitability.84 Arachidonic

acid is in contrast a HERG blocker.85 Phosphatidylinositol 4,5‐bisphosphate (PIP2), an important structural cofactor

in many membrane proteins, is the precursor for diacylglycerol and inositol 1,4,5‐triphosphate and is involved in

cellular proliferation and neurological diseases. Endogenous PIP2 in the plasma membrane causes an increase in

Eag1 channel activity. Exogenous PIP2, however, strongly inhibits Eag1 and causes a shift of the activation to more

positive potentials.86 PIP2 is thought to bind directly to the N‐terminus of Eag1 at a site overlapping CaM BD‐N,

suggesting a possible interaction between CaM and PIP2.
87 PIP2 also interacts with HERG, accelerating its

deactivation through interaction with the C‐terminal domains.88,89

Extracellular magnesium, among other divalent cations, causes a long delay in Eag1 activation.90,91 Mg2+ sits in

a pocket between the S2 and S4 segments and would interfere with the voltage‐induced rearrangement of both

segments, slowing down activation.92 Low pH also slows down the activation of the channel and competes with

magnesium,90 suggesting that magnesium binding sites need to be deprotonated to become accessible for mag-

nesium. The voltage‐and pH‐dependence of the magnesium effect on Eag1 may constitute an important mechanism

for neuronal regulation; more specifically, it could modulate firing frequencies by shaping the action potential.90

Both extracellular divalent cations93,94 and low pH95 show also an inhibitory effect on HERG.

Reactive oxygen species (ROS) during oxidative stress can inhibit Eag1 currents by cysteine oxidation both at

the N‐terminus, resulting in a higher threshold of the activation, and at the C‐linker with a slower time course,

abolishing channel function.96 ROS also modulate HERG currents, although this action is mechanistically less

clear.97

2.3 | Pathophysiology

The conservation of Eag1 throughout the animal kingdom,98 including species that do not have a nervous system,

suggested that Eag1 must also serve functions less specialized than the modulation of electrical excitability.

However, full knockout of the transmembrane domains of the channel did not result in detectable phenotypic

alterations,50 and its expression was not detectable in peripheral tissues.18 There are no reports of loss of

function mutations in the KCNH1 gene that correlate to pathological conditions. In contrast, several reports in

recent years established a causal relation between a gain of function mutations that originate a shift in the

activation potential of Eag1 towards more hyperpolarized values and congenital diseases (Temple–Bareitser [TB]

and Zimmermann–Laband [ZL] syndromes) characterized by coarse face appearance, hypertrichosis, nail, and

skeletal alterations, seizures, and intellectual disability.99–103 Although the neurological symptoms are compa-

tible with the role of Eag1 in the CNS, the developmental alterations would require the role of Eag1 in devel-

opment, but KCNH1 is not detectable in fetal RNA. This apparent contradiction obeys to the mentioned fact that

the expression of Eag1 is restricted to a short period in the cell cycle of somatic cells.61 E2F1, one of the main

transcription factors orchestrating cell division, binds to the promoter of the channel and induces its expression

at the beginning of the G2 phase of the cycle. The expression is maintained during the rest of the cell division,

after which the channel is rapidly downregulated.61 Hence, at any given time, only cells in G2/M phases will

display mRNA for KCNH1, which will then be diluted in the bulk of G0/G1 cells and, therefore, not detectable.

The expression of Eag1 at this specific cell cycle phase impacts many cellular events.
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Loss of this regulation mechanism would result in sustained expression of Eag1, which is a common finding in

tumor cells. The central control factor, E2F1, is under the control of the tumor suppressors p53 and pRb, which

are frequently downregulated in tumor cells. Overexpression of Eag1 has been detected in all studied tumor

types, except for chronic lymphoid leukemia and glioblastoma, which poses a problematic interpretation because

of the high level of expression in the normal nervous tissue.19,104–117 Therefore, Eag1 can be considered an

almost universal tumor marker and has been used to target therapeutic agents to tumor cells, preserving the

surrounding normal tissue.118–120 Moreover, tumor cells expressing Eag1 obtain a selective advantage and

become rapidly dependent on the channel to proliferate and survive, in a mechanism similar to the oncogene

addiction described for classical oncogenes. This has two implications: On the one hand, patients with tumors

that express Eag1 show in many cases shorter survival, like documented for fibrosarcoma,117 ovary

carcinoma,121 glioblastoma,116 acute lymphoid leukemia,108 gastric,105 head and neck,111 or colon cancers.122 On

the other hand, removing the selective advantage through inhibition of Eag1 reduces tumor progression in vitro

and in animal models.20,112,113,123–131

Increased (or extemporaneous) expression of Eag1 results in faster proliferation that can be explained by

several mechanisms that might coexist in the same cell. More complexity arises from the fact that the properties of

the channel heterologously expressed in cell models change during the cell cycle. Cells that are not in the M phase

show less ionic selectivity, which translates in permeability to Cs+ ions (a classical blocker of K+ channels) and more

physiologically in a block by intracellular Na in cells in the M phase.

Excessive Eag1 activity would cause hyperpolarization of the membrane potential. The membrane potential

does influence cell cycle progression. Fast proliferating cells such as cancer cells are, in general, more depolarized,

while cells with a very hyperpolarized resting membrane potential (such as neurons) show no mitotic activity.

Inhibition of DNA synthesis can be experimentally induced by hyperpolarization of the membrane potential of

Chinese hamster ovary cells. The opposite is also true: causing depolarization in cells leads to the initiation of DNA

synthesis.132 Changes in potential during cell cycle progression are much slower, more gradual, and smaller than

the fast action potential.

As a result of membrane hyperpolarization, the driving force for calcium entry would increase. Ca2+ is a

major second messenger involved in cellular functions such as proliferation, migration, survival, and apop-

tosis.133 The complexity of the Ca2+ signaling pathways allows every individual cell to exploit Ca2+ in a

unique way to perform its specific function. Depletion of extracellular Ca2+ arrests cells at early G1 phase

and G1/S phase transition. However, cancer cells can circumvent this requirement and can keep proliferating

in Ca2+‐deficient media. The depletion of Ca2+ in the endoplasmic reticulum (ER) leads to cell division arrest.

This inhibition of DNA synthesis, protein synthesis, and nuclear transport, causes an accumulation of cells in

the quiescent state. Normal cells are thus dependent on both intracellular and extracellular calcium for their

proliferation, especially during the G1 phase.134–136 Recent evidence supports a mechanism implying Ca2+

homeostasis in cells expressing Eag1. The channel forms part of a complex where the calcium channel Orai1

and the calcium pump SPCA2 play pivotal roles.137–139 Inhibition of the complex (through blockade of Orai1

or Eag1) results in a change in the frequency of calcium oscillations and decreased microtubule dynamics.

Knockdown of Eag1, in contrast, changes the amplitude of calcium peaks, leaving the frequency unaltered,

and enhances microtubule dynamics. In both cases, cell functions dependent on microtubule growth will be

altered. Cell division or primary cilium homeostasis belongs to this group of functions, among many

others, explaining the pleiotropy of Eag1 impact on cell physiology. The exact effect of Eag1 inhibition or

knockdown will depend on the moment in the life of a cell and the exact location of the population of

channels inhibited.

The alteration of Ca2+ and microtubule homeostasis is likely responsible for the observation that proper

resorption of the primary cilium in dividing cells requires Eag1.140 The primary cilium is a microtubule‐based
structure expressed by essentially all nonactively dividing vertebrate cells that act as a signaling hub that con-

centrates spatially factors implicated in relevant pathways such as TGF, SHH, or Wnt signaling.141 The cilium is
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disassembled141 or shed142 at the initiation of the cell cycle, to allow its basal body (the mother centriole) to

nucleate the formation of the mitotic spindle. Knockdown or inhibition of Eag1 results in delayed ciliary resorption,

while overexpression of the channel impairs ciliary formation after division.140 These opposite effects do not

respond to altering the same pathway in opposite directions, but rather to two different mechanisms. While the

effect on ciliary resorption depends on K+ permeation and requires ciliary localization, the impact on reciliation

occurs in the absence of permeation and is even induced by constructs lacking transmembrane segments and,

therefore, incapable of ion permeation.140 This apparent contradiction could be explained if Eag1 forms part of a

protein array where the channels participate in both the maintenance of the structure and the proper function of

the complex. In such a scenario, knockdown of the protein would affect both functional aspects, while inhibition

would change the function, but not the structure of the complex. It is not uncommon that ion channels show

functions that do not require ion permeation.

In some cases, the voltage‐dependent conformation changes of the channel are still necessary for the effects,

while permeation itself is not. A relevant example of this phenomenon is the interaction of HERG with β1 integrin

and its influence on cell adhesion and migration.143 For the case of Eag1, nonconducting mutants expressed

in heterologous systems retain the ability to produce an increase in proliferation in vitro and tumor progression in

vivo, although to a lesser extent than the wild type. In the Drosophila eag channel, nonconducting mutants can

stimulate DNA synthesis through an increase in p38 MAPK. Interestingly, a nonconducting mutant in the open

conformation did not stimulate proliferation, meaning that proliferation could only be affected in a closed con-

formation of the channel. As described above for HERG, Drosophila eag channels use their voltage sensor to

activate the MAPK signaling pathway. That signaling activity is linked to channel conformation, determined by the

position of the voltage sensor and independent of the ion flux.144

Eag1 might also influence volume regulation, which is essential for the cell cycle. A dividing cell increases its

volume during interphase. Subsequently, it shows a large, fast, and regulated decrease in cell volume during the

transition from prophase to metaphase, in a process termed pre‐mitotic condensation.145,146 After the metaphase,

the cell volume increases again, followed by cytokinesis.147 In most cell types, these changes in cell volume

correlate with volume‐dependent chloride channels that allow the flow of chloride followed by water. The activity

of potassium channels compensates for the charge disbalance generated.147 Although we are not aware of any

studies that have documented the role of Eag1 in volume regulation, medulloblastoma cells the close relative Eag2

during mitosis, and its downregulation precludes the cell volume reduction and induces mitotic catastrophe.148 The

possibility that Eag1 has a similar role in other cell types deserves further study. Eag1 also favors tumor pro-

gression through increased resistance to hypoxia and angiogenesis,21 ROS signaling,149 and by augmented cell

migration,150 but these effects are mechanistically less clear.

Due to its action on primary cilium homeostasis, overexpression of Eag1 during development would

result in a phenotypic defect resembling a ciliopathy, which is compatible with the rough facies, hyperte-

lorism, and defects in the digits that define ZL and TB syndromes. Alterations of cell proliferation match well

with the gingival hypertrophy that defines ZL, as well as the hyperproliferative features of cancerous cells.

However, in cancer, the alterations probably also obey to a loss of the time control of Eag1 expression

because sustained expression of wild‐type channels is sufficient to favor tumor progression. There is not

enough data about cancer incidence in TB and ZL patients, partly because of the patients' reduced life span,

attributable to the epileptic phenotype. The physiology and pathophysiology of Eag1 are summarized in

Figure 3.

In summary, if Eag1 function is increased during development in somatic cells, the result is a ciliopathy‐like
phenotype. If there is sustained expression of the channel in time, due to promoter alterations or transcription

changes secondary to alteration of p53, Rb, E2F1, miR34a,151 and miR 296‐3p,113 this will offer a selective

advantage to cancer cells. We have no evidence of the transforming activity of Eag1 on its own. The large number

of factors that participate in the timely control of Eag1 explains the extraordinary incidence of Eag1 over-

expression in human cancer.
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F IGURE 3 (See caption on next page)
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3 | MODULATION OF EAG1

3.1 | Small molecule inhibitors of Eag1

The discovery of Eag1 inhibitors often responds to testing on Eag1 the HERG inhibitors' activity because HERG is

one of the most studied off‐targets in drug discovery. The pool of compounds tested on HERG consist of more than

16,000 unique Molecular Chembl ID entries, many more than the number of compounds that were tested on

Eag1.152 Some of the HERG‐active drugs that showed anticancer activity were then tested on Eag1 because Eag1 is

ectopically expressed in many solid tumors.153

Small molecules can interact with the Eag1 channel in several different ways (Figure 4). The VSD has binding

sites for small molecules that act as gating modifiers (molecules 1, 2, 4, 6, and 7, Figure 4). Accessibility of the VSD

from the cell's outer side allows molecules to modulate the channel without crossing the membrane, like toxins

do.154–157 Most of the known small molecules that modulate Eag1 activity first cross the cell membrane and bind

to the intracellular side of the channel. A majority of those compounds are pore blockers that physically occlude

F IGURE 3 Schematic depiction of the physiological roles of Eag and the pathological consequences of its
altered expression and/or function. (A) Normal physiology. (B) Reduction of Eag1 expression or function. (C)
Normal periodic expression of an Eag1 form with increased activity. (D) Loss of periodicity in Eag1 expression
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Proposed binding sites for the known Eag1 modulators. Dimeric structure of Eag1 (KV10.1) (PDB
code: 5K7L), representing two opposite subunits: PAS domain colored in red, voltage sensor domain (S1–S4) in
orange, pore domain (S5–S6) in yellow with selectivity filter in gray, C‐linker in green and CNBHD in blue. CNBHD,
cyclic‐nucleotide binding homology domain; PAS, (Per‐Arnt‐Sim) domain; PDB, Protein Data Bank [Color figure can
be viewed at wileyonlinelibrary.com]
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the ion permeation pathway (molecules 3, 5, 8–20, Figure 4). Recent cryo‐EM studies of the channel have high-

lighted the importance of the intracellular domains in voltage‐dependent gating kinetics, especially the interface

between the intracellular part of the VSD, PAS domain, and CNBH domain32,37; PAS domain and C‐linker were

recently identified as targets of small molecules as allosteric modulators (compounds 21–23, Figure 4).131,158,159

3.1.1 | Gating modifiers

Gating‐modifiers (1–5, Figure 5) mostly change the kinetics of the channel activation, inactivation, or deactivation

by binding to the PD or VSD of the channel (Figure 4). It is believed that the gating modifiers mibefradil (1) and

purpurealidin analog no. 5 (2) bind to the outer part of the channel in a similar mode as peptide toxins (see

below).156,159–161

Potassium channels show several types of inactivation, such as N‐, P‐, U‐, and C‐type.162 C‐type inactivation is

a consequence of conformational changes in the selectivity filter and is slowed down by high extracellular con-

centration of potassium ions or tetraethylammonium (TEA) (3); Eag1 does not show such a phenomenon.163–167

ICA‐105574 (4, Figure 5 and Table 1), which acts as an activator of HERG, produces a slow voltage‐dependent
inactivation of Eag1, reminiscent of C‐type inactivation.164,168 ICA‐105574 is the only compound reported that has

opposite effects on HERG and Eag1 channels. It enhances HERG current by slowing down the rapid voltage‐
dependent C‐type inactivation and inhibits Eag1 through C‐type inactivation. A similar inactivation was found in

the Eag1 (Y464A) mutant, and this effect was further increased by ICA‐105574,164 indicating separate

mechanisms.

Mutational and molecular dynamics (MD) studies in both channels indicate that the binding site for ICA‐
105574 (4) is located close to the selectivity filter between the S5 and S6 segments.172,176 The residues important

for ICA‐105574 binding in Eag1 are F359, L434, and Y464 in all four subunits (Figure 6). The mutations F359A and

L434A/C, which produced an apparently functionally unaltered Eag1 channel, reduced the efficacy ICA‐105574 (4).

The mutant Eag1 F359L showed prominent inactivation, and ICA‐105574 (4) acts as an activator. The triple

mutation M431F/M458L/L463M of the binding site of Eag1 to mimic the sequence of the HERG binding pocket

still retained the biophysical properties of the wild‐type channel as well as inhibition with ICA‐105574 (4).

Therefore, the opposite effect of ICA‐105574 (4) on Eag1 and HERG was not a consequence of the different

binding sites, but of the differences in the intrinsic speed of inactivation gating.172 In HERG channels, all four

binding sites have to be occupied for maximal agonistic effect, due to cooperative subunit interactions and not to

F IGURE 5 Structures of gating modifiers
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positive cooperativity of ICA‐105574 (4) binding to multiple sites.177 Recently, a structure–activity relationship

(SAR) and MD study of ICA‐105574 (4) activation of HERG channel suggested that ICA‐105574 (4) does not

influence the K+ occupancy in the selectivity filter, and it does not fit into the negatively charged activator

pharmacophore proposed by Schwew et al.178,179 ICA‐105574 (4) would stabilize F627 in the selectivity filter of

HERG through an allosteric mechanism involving M645 in the S6 segment and strengthening of the hydrogen‐bond
network behind the selectivity, leading to an attenuated C‐type inactivation. For this well‐tuned modulation of the

selectivity filter, ICA‐105574 (4) geometry and especially the nitro group are crucial.179

Mibefradil (1, Figure 4) reportedly modifies the gating of Eag1 by binding to the VSD (Figure 4). Mibefradil (1)

induced an apparent open‐state inactivation when applied to the extracellular side at hyperpolarized potentials,

but not from the intracellular side. In contrast to ICA‐105574 (4), which requires all four binding sites to be

occupied for a maximum effect, mibefradil (1) binds to the VSDs in an independent and noncooperative

manner,160,177 similarly to divalent ions that also bind to all four VSDs noncooperatively. Mibefradil (1) did not alter the

kinetics of current deactivation, and recovery from inactivation is affected by increased extracellular concentration of

potassium, supporting the idea of inactivation. Moreover, mibefradil (1) also inhibited the Cole–Moore shift. It also does

not act as an open‐pore blocker because it does not compete with quinidine, a known pore blocker (5). Mibefradil (1) also

inhibits other potassium channels as well as L‐ and T‐type calcium channels.160

Investigation of marine sponges as a versatile source of natural products led to the discovery of purpurealidin

analogs, such as compound 2 (at 10 μM inhibition of Eag1 by 52 ± 3%, Figure 4; Table 1), that exhibited similar

potency on Eag1 channels as mibefradil (at 10 μM inhibition of Eag1 by 50 ± 5%) (1). The natural alkaloid bro-

motyrosine purpurealidin J1 (2a, Figure 5) produced by Verongida sponges (Pseudoceratina pupurea) was a starting

point for the synthesis of simplified analogs. Among 27 synthesized analogs, purpurealidin analog 2 was the most

potent with an IC50 of 7.7 ± 1.0 µM. The introduced modifications are represented in Figure 7. Three parts of the

scaffold were modified: the aromatic ring next to the amide (R1), the substitution of the tyramine ring (R2) and the

basic center (R3). Amine (R3) is crucial for the activity because compounds with isopropyl show no activity. Also,

only monomethylamines were 1,5‐5 times less active than dimethylamines. If bromines are substituted with

hydrogens on the tyramine ring, the activity is also completely lost. Most of the phenyl substitutions at R1 show

better activity than 3,5‐dimethylisoxazole, but the substitution of phenyl is also important. Double substitutions on

para (methoxy) and meta (halogen) positions are preferred compared to double meta or double meta and para

F IGURE 6 Binding site of pore blockers. Residues important for binding of different compounds are shown
in sticks. Residues in light gray represent the lower part of the selectivity filter that also form interactions with
some blockers [Color figure can be viewed at wileyonlinelibrary.com]
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substitution. As with mibefradil (1), there is an inhibition of the Cole–Moore shift and induction of apparent open

state inactivation during prolonged depolarization, and the effect occurs at hyperpolarized potentials. Competition

assay with mibefradil (1) confirmed that both compounds share the same binding site in the VSD. Purpurealidin

analog 2 was tested in different cell lines and inhibited proliferation but also induced cytotoxicity in cell lines not

expressing Eag1.170 The effects of compound 2 in the tested cell lines can, therefore, not only be attributed to the

effect on Eag1 but may indicate binding also to other targets.144,170 A selectivity screening on different voltage‐
gated ion channels is still missing. However compound 2 was tested on HERG and showed inhibition by

57.6 ± 3.4%.171

Among antiarrhythmic drugs (5, 9, 12, 16) that inhibit Eag1, amiodarone (6, Figure 5) is the only compound that

inhibits the Cole–Moore shift. In addition to this effect, amiodarone (6) also strongly reduced the peak K+ current,

inhibited potassium current at potentials at which the K+ permeation pathway is closed, and slowed recovery from

hyperpolarized holding potentials with high external K+ concentration. All those effects are not characteristic of

the classical open‐pore channel blockers. Therefore, even with the induction of a significant apparent inactivation

in a voltage‐dependent manner that usually results from a slow open‐pore block, it is hypothesized that amio-

darone (6) binds either to the PAS domain or to the VSD of Eag1.154 Amiodarone (6) was also found to inhibit

sodium and calcium channels.175

Ginsenoside 20(S)‐Rg3 (7, Figure 4) is a steroid glycoside that alters the gating of multiple members of the

KCNH family in submicromolar concentrations. Its action is not limited to KV channels, since it modified gating of

KV1.4, KV1.5, KCNQ1/KCNE1, BKCa, other Na+, and Ca2+ as well as ligand‐gated channels at micromolar con-

centrations. Ginsenoside Rg3 (7) induced Eag1, HERG, and hELK1 channels to open at more negative potentials

than normal. In addition to this, it slowed HERG and hELK1 channels deactivation, and in the latter channel

ginsenoside Rg3 (7) also enhanced inactivation. Eag1 activation was accelerated in the presence of glycoside. Due

to its large size and rapid effect on the gating, it was suggested that its binding site lies in the extracellular side of

the channel.161 The residues in the outer region of VSD that reduce the effect of ginsenoside Rg3 (7) on HERG

were identified using alanine scanning mutagenesis and MD simulations. The relevant residues were Y420, L452,

F463, I521, and K525. The double mutation Y420A and L452A abolished the effects of ginsenoside Rg3 (7) on

voltage‐dependent gating, but the current amplitude increase was still present. Mutation L417A produced a

channel that enhanced the effects of ginsenoside Rg3. It is proposed that ginsenoside Rg3 (7) stabilizes the VSD of

F IGURE 7 Representation of natural alkaloid bromotyrosine purpurealidin J1 (2a) and modifications of some
synthetic analogs. Arrows represent the activity of the substitution while a cross represents a loss of activity.
The most active purpurealidin analog is compound 2 with R1 = 1‐chloro‐2‐methoxyphenyl, R2 = Br,
R3 = dimethylamine [Color figure can be viewed at wileyonlinelibrary.com]
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HERG in an activated state,180 compared to deactivated state stabilization by divalent ions that bind to a similar

location.181

3.1.2 | Ion channel pore blockers

A positively charged moiety (a basic center) is an essential part of all Eag1 pore blockers (Table 2). N‐methyl‐astemizole

applied to the extracellular side of the channel showed significantly lower inhibition compared to astemizole (8, Figure 8).

A similar property was reported for clofilium (9, Figure 8) and LY97241 (10, Figure 8), where a slower onset of the block

by the permanently charged clofilium (9) was observed if applied externally. Eag1 inhibition was more potent for

compounds with a permanent positively charged amine if applied from the cytoplasmic side of the channel. For external

application, a non‐permanently charged compound showed better inhibition because of easier passage through the

lipophilic membrane in uncharged form.40,182 The complementary effect was also seen in HERG channels with N‐methyl‐
astemizole and imipramine (11, Figure 8), which is also an open‐pore channel blocker of Eag1.153 Tertiary or secondary

amines in molecules are already well‐known pharmacophore features of HERG blockers.183–185

The difference between various channel blockers is that they can dissociate from the binding site and

therefore the channel can close or stay trapped in a closed channel conformation (“drug‐trapping”204). Among the

Eag1 pore‐blockers investigated, drug trapping was reported for clofilium (9), LY97241 (10), and dronedarone

(12, Figure 8) (partially),182,194 while chloroquine (13, Figure 8), haloperidol (14, Figure 8), imipramine (11), MK‐499
(15, Figure 8), and dofetilide (16, Figure 8) dissociate from the binding site.40,198,203 The dissociation from the

binding site is also observed in HERG for amiodarone (6), cisapride (17, Figure 8), and haloperidol (14).205

There are several different amino acids important for the binding of pore blockers. For binding of MK‐499 (15),

terfenadine (18, Figure 8), and clofilium (9) A453 is important. The long lipophilic tails of the compounds would be

stabilized between S6 and pore helix in close proximity to A453. Additional interactions with the channels are

π‐stacking interactions between the compounds and residues Y464 and F468 (Figure 6).190

There is a significant difference between the block of Eag1 and HERG induced by methanosulfonanilides 12,

15, 16, 19 (Figure 7). Because intact C‐type inactivation is essential to retain the potent inhibition in HERG

channels,202 of C‐type inactivation was introduced in Eag1 by two point mutations, T432S and A443S, both

residues in the pore region,203 to test the affinity of the methanosulfonanilide dofetilide (16) as well as of aste-

mizole (8) and imipramine (11). In the case of dofetilide (16) and astemizole (8) the IC50 values for the Eag1 mutant

were 3‐fold lower than in wild‐type, but imipramine (11) showed an almost two‐fold increase in the IC50. F468 in

Eag1 and F656 in HERG are known to be important for π‐stacking interactions with several blockers (Figure 6).

The F468C mutation confirmed that it is crucial for astemizole (8) and imipramine (11) but not for dofetilide

binding (Figure 6). In addition to the difference in recovery kinetics, the binding site seems to be different for

imipramine (11) compared with that of astemizole (8) and dofetilide (16).40 Residues S436, V437 located at the

beginning of the selectivity filter are also necessary for the block by clofilium.190 TBA (20, Figure 8) is one of the

smallest blockers of Eag1 that binds more directly into the cavity and has fewer interactions with the neighboring

pore compartments, as indicated by the lack of effect of the mutation at A453 on the block by TBA (20).190

Dronedarone (12), an alternative antiarrhythmic drug to the structurally similar amiodarone (6), was recently

investigated as an Eag1 channel modulator. In contrast to amiodarone (6), dronedarone (12) inhibited Eag1 with an

open‐pore block mechanism independent of the VSD. A fraction of dronedarone molecules being trapped in the

channel pore could explain the slowed‐down recovery rate of the channel and its two‐exponential time course at

−140mV. Reversible block by increased extracellular K+ concentration also supported open‐channel block.

Moreover, competition experiments confirmed that amiodarone (6) and dronedarone (12) bind to independent

nonoverlapping binding sites, probably in the Eag1 pore. There is no shift of the Cole‐Moore effect to more

negative potentials, as observed with amiodarone suggesting that dronedarone (12) does not interact with the

VSD.194
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The antimalarial drug chloroquine (13) has been recently reported to inhibit Eag1. Inhibition of other po-

tassium channels, inhibition of autophagy, and normalization of the tumor vasculature by chloroquine suggested

examining the effect of chloroquine (13) on Eag1.198,206,207 Electrophysiological experiments suggested that

chloroquine (13) inhibits Eag1 in HEK293 cells with an IC50 value of 31.05 ± 4.5 μM as an open‐channel blocker
that needs to dissociate from its binding site before the channels can close (Table 2). Open channel block was

inferred from the slow current deactivation and absence of block of the current if chloroquine (13) was applied

externally. However, competition with known open channel blockers was not tested; it is still possible that the

binding site is located elsewhere accessible from the cytoplasmic side. Chloroquine (13) blocked Eag1 in a voltage‐
and concentration‐dependent manner.198 The block of HERG channels is also concentration‐dependent but

voltage‐independent with an IC50 value of 2.5 μM (Table 2) in HEK293 cells.199

3.1.3 | Allosteric modulators

Tetrandrine (21, Figure 9) is a natural compound used in traditional Chinese medicine that inhibited Eag1 with an

IC50 of 69.97 ± 5.2 µM (Table 3). The inhibition of Eag1 current is concentration‐dependent, but 21 did not inhibit

the Cole–Moore shift. Moreover, the inhibition was independent of the intracellular calcium concentration. In silico

F IGURE 8 Structures of ion channel pore blockers
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modeling supported by mutation studies were used to map the putative binding site for tetrandrine (21). The triple

mutant Eag1 I550A/T552A/Q557A, Figure 10) in the C‐linker domain showed significantly less current inhibition

than wild‐type channels, while the individual mutations I550A, T552A, or Q557A did not have a similar effect.

Tetrandrine (21) specificity was also investigated on KV 7.1, Kir2.1, and HERG channels at 100 µM, a concentration

that inhibits Eag1almost completely, but only slightly HERG.131 Tetrandrine (21) also inhibits voltage‐gated Ca2+

channels, large‐conductance Ca2+‐activated K+ channels, two‐pore channels as well as intracellular Ca2+

pumps.208,209 The binding site of tetrandrine (21) could also be the same for procyanidin B1 (22, Figure 9), a natural

compound present in grape seeds that inhibits Eag1 in a concentration‐dependent manner with an IC50 value of

10.4 ± 0.9 µM (Table 3). Similar to tetrandrine, 100 µM procyanidin B1 (22) does not inhibit KV7.1, Kir2.1, or HERG

significantly. The triple mutant Eag1 I550A/T552A/Q557A also shows a 40‐fold reduction of the inhibition over

wild‐type Eag1.210

The binding site for chlorpromazine (23, Figure 8) in the PAS domain was identified with a combination of

surface plasmon resonance (SPR) and tryptophan fluorescence. Deleting the PAS domain abolished inhibition

by chlorpromazine, especially at voltages lower than 30 mV, and decreased it at higher voltages. When the

voltage rises above −30 mV, current inhibition becomes constant and voltage‐independent in mouse Eag1.158

An open‐pore block could explain the inhibition at higher voltages, and therefore chlorpromazine (23) would

have two different mechanisms. At lower voltages, chlorpromazine (23) could inhibit mouse Eag1 by binding to

the PAS domain, and when the channel opens at higher voltages, then inhibition occurs by pore block. The

structural similarity between chlorpromazine (23) and imipramine (11), which is a known voltage‐dependent
open‐pore blocker of Eag1184 would support an open‐channel pore block. Moreover, chlorpromazine (23)

displayed a voltage‐dependent open‐pore block of HERG, indicating the possibility for a similar mode of

F IGURE 9 Structures of allosteric modulators

TABLE 3 Eag1 allosteric modulators

Compound Test system and activity on EAG1 Test system and activity on HERG

Tetrandrine (21) CHO; IC50 = 70.0 ± 5.2 μM131 CHO; >100 µM131

Procyanidin B1 (22) HEK293; IC50 = 10.38 ± 0.87 μM190 HEK293; >100 µM210

Chlorpromazine (23) mEAG, Xenopus oocytes, inside‐out;
IC50 = 3.7 ± 0.7 μM158

Xenopus oocytes; IC50 = 21.6 ± 6.9 μM; nH = 1.1 ± 0.2211

IC50 = 4.9 ± 0.3 μM; nH = 1.3 ± 0.1212

Note: Unless otherwise indicated, oocytes were recorded using two‐electrode voltage clamp, and mammalian cells in

whole‐cell patch clamp.

Abbreviations: CHO, Chinese hamster ovary cell line; mEAG, mouse EAG; nH, Hill coefficient.
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action in Eag1.212 The PAS domain of the HERG channel did not bind chlorpromazine (23) in SPR studies. It is

likely that the selective binding of chlorpromazine (23) to the mouse Eag1 PAS domain modulates interactions

between PAS and VS or CNBH domains.158 Chlorpromazine (23) inhibits also voltage‐gated Na+ channels,212

nicotinic acetylcholine receptor channels,213 and ATP‐activated channels.214 The binding site for chlorpro-

mazine (23, Figure 9) in the PAS domain was identified with a combination of surface plasmon resonance (SPR)

and tryptophan fluorescence. Deleting the PAS domain abolished inhibition by chlorpromazine, especially at

voltages lower than 30 mV, and decreased it at higher voltages. When the voltage rises above −30 mV, current

inhibition becomes constant and voltage‐independent in mouse Eag1.158 An open‐pore block could explain the

inhibition at higher voltages, and therefore chlorpromazine (23) would have two different mechanisms. At

lower voltages, chlorpromazine (23) could inhibit mEAG1 by binding to the PAS domain, and when the channel

opens at higher voltages, then inhibition occurs by pore block. The structural similarity between chlorpro-

mazine (23) and imipramine (11), which is a known voltage‐dependent open‐pore blocker of Eag1184 would

support an open‐channel pore block. Moreover, chlorpromazine (23) displayed a voltage‐dependent open‐pore
block of HERG, indicating the possibility for a similar mode of action in Eag1.212 The PAS domain of the HERG

channel did not bind chlorpromazine (23) in SPR studies. It is likely that the selective binding of chlorpro-

mazine (23) to the mEAG1 PAS domain modulates interactions between PAS and VS or CNBH domains.158

Chlorpromazine (23) inhibits also voltage‐gated Na+ channels,212 nicotinic acetylcholine receptor channels,213

and ATP‐activated channels.214

3.1.4 | Divalent ions

As stated before, the KCNH family of channels is sensitive to different divalent cations that slow the acti-

vation rate of the channels when applied from the extracellular side. Sr2+, Ba2+, Zn2+, Mg2+, Mn2+, Co2+, and

Ni2+ slow down the activation in increasing order, from millimolar to micromolar concentration. The slowing

of activation correlates with ion hydration enthalpy. The effect of Ca2+ is minor compared with other ions.

Ba2+ and Zn2+ also induce a slow current decay with time that could be an effect of channel block or

F IGURE 10 Proposed binding site for tetrandrine (21) and procyanidin B1 (22), located in the C‐linker of
Eag1 (PDB code: 5K7L). Amino acids T525 (equivalent to T552) and I523 (equivalent to I550) in one subunit,
important for binding of tetrandrine, are shown as sticks. The Q530 (equivalent to Q557) in proximity is from the
neighboring subunit. The enlarged view displays three subunits for better visualization [Color figure can be viewed
at wileyonlinelibrary.com]
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inactivation.90 Externally applied divalent ions interact with the VSD by interactions with negatively charged

residues.

The binding site for Mg2+ in Drosophila eag was investigated through the mutation of several residues in

different segments of the VSD (Figure 11). Mutations D278V (Eag1 D258) and D327A/F (Eag1 D307), in which a

negatively charged amino acid is replaced by a hydrophobic residue, eliminated Mg2+ modulation of the activation

kinetics. When residue D278 was extended by one methylene group by mutation D278E, the mutated channel was

insensitive to Mg2+. In contrast, the D327E mutation did not affect Mg2+ modulation.92 Mn2+ and Ni2+, which have

different sizes and polarizability, produced similar effects on the eag channel as Mg2+ ions. Based on the different

ions and their properties, it was proposed that their coordination geometries are important for the formation of

interactions with the acidic residues in S2. This was especially pronounced with residue D278, where mutation to

glutamic acid would disrupt the regular octahedral geometry of the binding site.215 S321 (Eag1 S324) in Eag2,

located in S4, was suggested to form a “bridge” between S4 and acidic residues in S2 and/or S3 through the

divalent cation. In eag channels, this bridge is not necessary for the slow activation effect of the divalent cations

but, if present, the effect is significantly increased. These interactions slow down the transition of the channel from

an early closed state at the hyperpolarized potential to a late closed state at more depolarized potentials, from

which the channel can open.181

3.2 | Natural products

Nature is a very powerful, yet underexploited source of potential drugs, to which animal toxins make a particularly

rich contribution. Venomous animals are found everywhere, and more than 220 000 species are described so far;

however, most of their venoms have not been studied. The acquisition of venom is a life‐changing event in the

evolution of animals, as it transforms the predator‐prey relation into a biochemical instead of physical combat.

Venoms are evolutionary evolved to bind physiological targets with excellent potency and outstanding selectivity,

often even distinguishing between channel subtypes. They have a unique spatial fold, and their metabolites often

possess low toxicity.216,217 Six venom‐derived peptides have been approved by the FDA so far, such as an an-

algesic, ziconotide (Prialt) derived from the Conus magus, and an antidiabetic, exenatide derived from the Gila

monster.218 In terms of drug design, it would be ideal to combine the epitope responsible for the unseen potency

and selectivity of peptide toxins, grafted on a template of small molecules, who offer a better bioavailability and

F IGURE 11 Binding site of divalent cations in the voltage‐sensor domain (PDB code: 5K7L), with sticks
representation of amino acids important for the binding of divalent ions. Residues K327, R330, and R333 represent
positively charged residues that respond to changes in the membrane voltage [Color figure can be viewed at
wileyonlinelibrary.com]
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stability.219 The known natural compounds with activity against Kv10.1 are described below and summarized in

Table 4.

3.2.1 | Alkaloids

Sponges are among the most versatile sources of marine natural products, and their secondary metabolites show

promising properties such as defensive, antibiotic, antiangiogenic, antiproliferative, hemolytic, and cytotoxic ac-

tivities.223,224 Pupurealidin analogs are alkaloids produced by Verongida sponges. Bromotyrosin purpurealidin J1

was found in the Pseudoceratina pupurea and served as inspiration for synthesizing simplified amide analogs as

described above. Among them, purpurealidin Analog 5 was the most potent, with an IC50 of 7.7 ± 1.0 µM for Eag1.

An electrophysiological examination of this compound revealed a shift of the activation curve to more negative

potentials. This effect of Compound 5 was correlated to an induced apparent open state inactivation during

prolonged depolarization, while it also affects the gating at hyperpolarized potentials. Since these effects are

reminiscent of mibefradil, a competition assay with mibefradil was performed, and Compound 5 was found to

compete for the same binding spot as mibefradil. Therefore, it was suggested that Compound 5 is a gating modifier

that binds to the voltage sensor on a binding spot that overlaps with the one for mibefradil. Compound 5 was

tested on different cell lines and inhibited proliferation but also induced cytotoxicity in all the cell lines that were

tested, also cell lines not expressing Eag1. The effects of Compound 5 on the tested cell lines can therefore not

only be attributed to the effect on Eag1.170 A selectivity screening on different voltage‐gated ion channels is still

missing, however, Compound 5 was tested on one of the most relevant cardiac ion channels HERG and showed

inhibition of 57.6 ± 3.4%.171

3.2.2 | Peptides

κ‐Hefutoxin 1 is the first toxin described to inhibit Eag1. Isolated from the Asian forest black scorpion Heterometrus

fulvipes, κ‐hefutoxin 1 contains 22 residues and two disulfide bridges, matching the typical potassium channel

scorpion toxins structure with 20–75 amino acids and 2–4 disulfide bridges.220 Toxins blocking K channels, even

with very divergent three‐dimensional (3D) structures, share a common feature crucial for interaction with the

channel: a functional dyad consisting of the combination of lysine and a hydrophobic residue (mostly tyrosine or

phenylalanine) on an average distance of 6.52 ± 0.62 Å from each other. This allows the positively charged lysine to

interact electrostatically with a negative residue in the pore, resulting in a physical obstruction for ion conduction.

Also κ‐hefutoxin 1, despite its unique 3D fold of two parallel helices without any β‐sheets, contains such a

functional dyad.225 The first screening by Srinivasan et al.225 revealed that κ‐hefutoxin inhibits KV1.2 and KV1.3

with low affinity, and a different primary target was postulated. Subsequent screening by Peigneur et al.226 showed

inhibitory activity of κ‐hefutoxin 1 on KV1.6, but not on KV1.1, KV1.4, KV1.5, Shaker IR, KV2.1, KV3.1, KV4.2, or

HERG, revealing an exciting selectivity profile for this toxin. Finally, Moreels et al.220 identified Eag1 as the most

potent target of κ‐hefutoxin 1, with an IC50 of 26 ± 2 µM. Although the affinity is still relatively low, this toxin offers

a beautiful starting point in the search for Eag1‐inhibiting peptides as the selectivity profile shows a lack of activity

on HERG, opposed to most Eag1‐blocking small molecules.

APETx4, derived from the sea anemone Anthopleura elegantissima, reduces the activation rate of Eag1 and

shifts the steady‐state activation curve to more depolarized potentials. Together with the observation that APETx4

inhibits Eag1 in the closed state, it is suspected to act as a gating modifier, binding to the S3b‐E2‐S4 region (the

voltage sensor paddle). Just like the functional dyad that many potassium channel toxins have in common, gating

modifiers often rely on a hydrophobic triad in combination with some charged amino acids on the toxin surface for

their binding to ion channels. In APETx4, the hydrophobic triad is formed by Y32, F33, and L34. Amongst a panel of
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voltage‐gated channels, APETx4 is most active on Eag1 with an IC50 of 1.01 ± 0.01 µM, but also inhibits other

channels such as KV1.4, NaV1.4, KV2.1, NaV1.5, KV1.3, KV1.5, and NaV1.6 (in decreasing order of inhibition per-

centage). Although no inhibition on HERG was observed during a standard test protocol (pre‐pulse of +40mV,

followed by a pulse to −120mV), APETx4 showed a voltage‐dependent effect on HERG with the highest inhibition

of the tail current observed after a pre‐pulse of −20mV. In the low micromolar range, however, APETx4 can

discriminate between Eag1 and HERG. APETx4 shows a concentration‐dependent cytotoxic and proapoptotic

effect on different cancer and Eag1 expressing cell lines but does not affect the proliferation of healthy fibroblast

cells. Since also cancer cell lines not expressing Eag1 are affected, the effect of APETx4 is believed to be mediated

not only by Eag1.156

TABLE 4 A1. Pseudoceratina purpurea, photo by Ria Tan. A2. Eag1 current traces during perfusion with ND96
(black), 10 µM of analog 5 (dark gray), 60 µM of analog 5 (light gray).170 A3. Structure of Eag1 modulator analog
5.170 B1. Heterometrus fulvipes, photo by Vivek Philip. B2. Eag1 current traces in control and after application of
40 µM of κ‐Hefutoxin 1 (*).220 B3. Amino acid sequence of κ‐Hefutoxin 1.220 C1. Anthopleura elegantissima, Photo
by Ron Wolf. C2. Eag1 traces in control and after application of 1.6 µM APETx4.156 C3. Amino acid sequence of
APETx4.156 D1. Avicularia aurantiaca.221 D2. Eag1 current traces in control and after application of Aa1a.221 D3.
Amino acid sequence of Aa1a.221 E1. Avicularia purpurea.221 E2. Eag1 current traces in control and after application
of Ap1a.221 E3. Amino acid sequence of Ap1a.221 F1. Crotalus durissus collineatus, Photo by Wolfgang Wuster. F2.
Eag1 current traces in control and after application of 5 µM rCollinein‐1.222 F3. Selected docking solution for
Collinein‐1 and Eag1‐1222

(Continues)
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Two spider toxins, derived from the spiders' Avicularia aurantiaca and Avicularia purpurea, respectively

κ‐theraphotoxin‐Aa1a and μ‐/κ‐therapothoxin‐Ap1a (Aa1a & Ap1a in short), show 81% identity and are the most

potent Eag1 inhibiting peptides described until now, with an IC50 of 637 ± 59 nM and 236 ± 21 nM respectively.

Interestingly, Aa1a and Ap1a discriminate Eag1 from the cardiac‐relevant ion channels HERG (13 and 35‐fold) and
NaV1.5 (both 11‐fold). However, both toxins are also active on NaV1.2 and NaV1.7. No selectivity screening was

done on voltage‐gated potassium channels, yet many of them are also involved in heart physiology, such as KV1.4

and KV4.2.
227 A more extensive selectivity screening would undoubtedly be of added value for these toxins.

However, a detailed electrophysiological characterization of Aa1a and Ap1a was performed and revealed some

complex effects of both toxins on Eag1 channel gating. First, both toxins shift the activation of the channel to more

depolarized potentials, thereby reducing the open probability. Second, both toxins enhance the Cole–Moore shift,

which results in an Eag1 channel that is more difficult to activate after pre‐pulsing. At very depolarized potentials,

a voltage‐ and time‐dependent slow inactivation in the open state can be observed; Ap1a enhanced this open state

inactivation, while Aa1a had no effect. Aa1a enhanced the steady‐state inactivation, while Ap1a had no effect. None

of the toxins affected channel deactivation significantly. Interestingly, both peptides adopt an inhibitor cystine knot

(ICK) motif, which is often observed in spider toxins. This ICK provides chemical and thermal stability and protects

the peptide against proteases. Aa1a and Ap1a are very stable in human serum and cerebrospinal fluid. Similar to

APETx4, also these gating modifiers contain hydrophobic patches, which are very well conserved in both toxins

(F6, L7, W9, W29, and W32 for Aa1a; F6, W7, W9, W29, and W32 for Ap1a).221
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3.3 | Proteins

3.3.1 | Monoclonal antibody mAb56

Antibodies enjoy the benefit of high binding selectivity and the ability to distinguish between subtypes from highly

homologous ion channel families. In addition, whole antibodies are divalent, and this not only increases avidity for

the epitope but also can induce clustering and internalization of targets. Furthermore, antibodies show pharma-

cokinetic features that allow its metabolism as part of the body's normal protein dynamics, which reduces im-

munogenicity and the probability of generating toxic metabolites. The constant region of antibodies (Fc‐region)
enables the design of modifications to produce diverse effector functions. Although polyclonal antibodies have

been in therapeutic use, monoclonal antibodies represent the practical alternative that warrants generating

equally effective blockers using the same strategy. Besides, mAbs are also amenable for manipulation, modification,

and production in recombinant systems, making them favorable as diagnostic tools and therapeutic approaches.

Only a handful of mAbs able to inhibit the function of ion channels has been described.228 SVmab1 targets sodium

channel Nav1.7 at the S3–S4 extracellular loop region of domain II, that is, the voltage‐sensor paddle, and stabilizes

the closed state in a state‐dependent manner; this mAb showed analgesic effects in inflammatory and neuropathic

pain in mice models.229 The calcium release‐activated Ca2+ channel Orai1 can also be inhibited by antibodies,

either by direct inhibition230 or through the induction of antibody‐mediated internalization in primary T cells.231

Against Eag1, we generated monoclonal antibodies that target though immunization using a fusion protein that

consists of two segments of Eag1: the third extracellular loop (E3), between the transmembrane segments S5 and

S6, which makes Eag1 distinguishable from its structural analogs Eag2 and HERG, and is the closest area to the ion

permeation route from the extracellular side. E3 was fused to the C‐terminal tetramerizing coiled‐coil region. Only

one of the antibodies able to bind Eag1 and not Eag2 or HERG (mAb56) reduced specifically Eag1 current in

transfected cells and the endogenous channel in tumor cells with an EC50 of approximately 50 nM. mAb56 also

showed the ability to inhibit the growth of tumor cells in vitro and of tumor models, including patient‐derived
xenografts in vivo.20 Epitope mapping for mAb56 identified the linear sequence GSGSGKWEG in the E3 domain,

relatively far from the permeation pathway, as indicated by the cryo‐EM structure. mAb62, another monoclonal

antibody whose epitope lies 23 residues downstream, that is, closer to the permeation path, does not produce

inhibition of the ionic current.20 Therefore, the mechanism of inhibition by mAb56 is likely not a direct interference

with ion permeation. When comparing the cryo‐EM structures of Eag1 and HERG, which have been studied in

different conformations, with the gate closed and open respectively, the epitope faces the pore Eag1. In contrast,

the homologous regions of HERG face outward. This could reflect a tilting of that region during gate opening that is

inhibited by mAb56 binding.232 Although it did not show any effects on ionic permeation through Eag1, mAb62

exhibited a promising application as diagnostic tools or/and to deliver drugs as Cy5.5‐labeled mAb62 specifically

bound and accumulated at tumor sites in vivo for at least 1 week, also drug‐activating enzyme β‐D‐galactosidase
conjugated mAb62‐β‐gal bound to the tumor site and the enzyme galactosidase remained active in vivo233.

Constructs derived from anti‐Eag1 antibodies are being developed as carriers to target the TNF‐related apoptosis‐
inducing ligand to tumor cells. Some of those constructs have shown efficacy in vivo as sensitizers to conventional

chemotherapeutic agents.118–120

3.3.2 | Collinein‐1

Snake venom thrombin‐like enzymes are a class of serine proteases with an activity similar to human thrombin.

Collinein‐1, derived from the Crotalus durissus collineatus, is such an enzyme. Besides its catalytic activity, cleaving

the Aα‐chain of fibrinogen, it also blocks Eag1 with an IC50 of 4.2 ± 0.5 µM. The recombinant derivative of collinein‐1
(rCollinein‐1) was used for the screening on ion channels and revealed inhibition on Eag1 (IC50 = 2.5 ± 0.3 µM) and
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slightly on HERG, but no effect was seen on Shaker, KV1.4, KV2.1, NaV1.1‐1.6, or NaV1.8. A mutant collinein‐1 without

its catalytic properties showed the same activity on the mentioned ion channels, with an IC50 of 4.3 ± 0.8 µM on Eag1.

Moreover, collinein‐1, together with phenylmethylsulphonyl fluoride, a blocker of the catalytic triad (His57, Asp102,

and Ser195), blocked the Eag1 currents to the same extent as collinein‐1 alone. Therefore, channel inhibition by

collinein‐1 is not dependent on its catalytic activity, allowing the use of the noncatalytic mutant as a potential drug

targeting Eag1 and with this avoiding the possible side effects on blood coagulation that could have been caused by

the native collinein‐1. An electrophysiological characterization showed how the Eag1 block increases towards more

negative potentials, suggesting that rCollinein‐1 interacts with Eag1 in a closed formation. A docking simulation to

elucidate the binding mechanism of Collinein‐1 to Eag1 resulted in many interaction sites. The putative pharmaco-

phore consists of R79, which forms hydrogen bonds to G536 of the selectivity filter, allowing a perfect fit in the pore

inlet. This would agree with the electrophysiology experiments, which revealed only a slight shift of the activation

curve towards more positive potentials, showing little contribution of channel gating to the channel inhibition.

Moreover, the fact that two other snake venom serine proteases and chymotrypsin showed less Eag1 inhibition the

less Eag1‐interacting residues they had in common with collinein‐1, confirmed this hypothesis. Finally, collinein‐1
caused cell death in the human breast adenocarcinoma cell line MCF7, possibly via inhibition of Eag1. In contrast to

other KV channels, Eag1 contains a 40 amino acid turret between S5 and the pore helix. As this turret surrounds the

pore opening, it was thought that toxins were not able to overcome this structural barrier. However, the docking

simulation described reveals a mechanism by which collinein‐1 is able to bind straight to the selectivity filter and thus

overcoming this barrier.222

4 | PERSPECTIVE AND CHALLENGES OF EAG1 AS A POTENTIAL
THERAPEUTIC TARGET

Because of its frequent aberrant presence in tumors and its participation in cancer progression, Eag1 is regarded as

an interesting oncology target. As described above, the advances in the mechanistic understanding of its regulation

and pathophysiology now allow to dissect which functional aspects of Eag1 are most relevant and therefore should

be addressed in particular. Nevertheless, voltage‐gated potassium channels represent a challenging field in drug

discovery, because of scarce structural data, high sequence similarity between isoforms, complex high‐throughput
screening assays and complicated mechanisms of voltage sensing and mechanical movements of channel gating. In

the case of Eag1, its high degree of structural similarity with the HERG channel makes the development of

selective ligands challenging. The potential severe side effects following cardiac HERG inhibition accompanying

Eag1 inhibition would represent a safety concern. Although our understanding of the important differences be-

tween Eag1 and HERG is increasing, to the best of our knowledge, no potent, selective small‐molecule Eag1

inhibitor is known. To aid the design of the latter, a combination of multiple drug design methods, including

molecular modeling and artificial intelligence, will be needed to identify important differences between the two

channels and use them to design Eag1‐selective ligands.

Ligand‐based design of specific Eag1 inhibitors has been explored by pharmacophore modeling, but this

method is hampered by the small number of known active and inactive compounds, which are required for the

creation and validation of existing pharmacophore models. In such an in silico approach, it is also crucial to know

whether the compounds bind to the same site and in the same state of the channel. This is a problem because the

exact binding site has not been determined for the most known Eag1 inhibitors. Moreover, there is no x‐ray or

cryo‐EM structure with any of those ligands bound to either Eag1 or HERG. For better creation and validation of

pharmacophore models, having a series of similar compounds with different effects on activity significantly im-

proves the predictive strength of the model. In the case of Eag1, the pool of compounds is very small. More or less,

there is only one larger series of purpurealidine analogs, which contains a set of active and inactive compounds

that most probably have the same mechanism of Eag1 inhibition.170 This significantly limits the rational drug
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design, but on the other hand, offers a lot of unexplored chemistry space to be investigated and to build

structure–activity relationships for novel libraries of compounds.

On the positive side, the recently solved high‐resolution cryo‐EM channel structures allow a medicinal chemist

to use the structure‐based drug design methodology.36,37 In the case of Eag1, such a method is advantageous for

the design of compounds that bind to the central cavity of the channel. The Eag1 cryo‐EM structure can be used for

compounds that would remain trapped in the channel when the gate closes. With the help of homology modeling, it

should be feasible to predict the structure of the Eag1 channel with the PD in the open conformation, because the

sequence similarity between Eag1 and HERG is very high in this region. For the same reason, achieving selectivity

for pore blockers poses a big problem. Nevertheless, the difference in the gating kinetics between both channels

could provide the desired selectivity, as it is the case for ICA‐105574 with modulation of C‐type inactivation.172

However, further research is needed to better understand the mechanism of C‐type inactivation and to use it for

selective modulation of Eag1.

Alternatively, small molecules may be used to interfere with the signal transmission between the detection of a

change in membrane potential and the mechanical opening of the channel pore. For this kind of channel mod-

ulation, the best binding location is probably the VSD and the intracellular domains that participate in the gating

process. The amino acid sequences of Eag1 and HERG differ the most in the loops connecting S1–S4 segments

pointing outside of the phospholipidic bilayer. From the extracellular side, the binding site could be similar to the

site in which mibefradil binds.160 The identification of the exact binding location for mibefradil would help in the

rational design of selective inhibitors. A possible starting point is also the extracellular binding site for divalent

ions, where small molecules could mimic their interactions with the VSD, and stabilize it in a closed state.181

Currently, available cryo‐EM structures, unfortunately, have low resolution and lack some residues especially in

the loops between segments of VSD, due to the high flexibility of these protein parts. Besides this, VSD movements

(especially S4) at the change of membrane potential probably significantly modify the morphology of the potential

binding surface. Therefore, the binding site could change, vanish or even a new binding site could appear based on

the state of a channel. A drawback of the currently available Eag1 and HERG structures is that the conformation of

VSD is only known in the up/depolarized position. This lack of different channel states along the gating path that

the channel goes through when it opens inactivates and closes, increases the challenge for structure‐based design.

Some of these problems can be addressed with homology modeling based on the other channels, followed by

molecular dynamics simulations. Previously disclosed Eag1 homology models, before the cryo‐EM structures be-

came available, were mostly built for the PD and none of them included the side pockets that are visible in the

cryo‐EM structure, illustrating the limitations of this method. Recently, new cryo‐EM structures of ion channels

were solved, increasing the template database for structure building and enabling homology modeling of different

states of the channels. Nowadays, the computer power has increased to the point that even multi‐microsecond

molecular dynamics simulations are possible and in a combination of enhanced sampling methods could enable us a

glance into ion channel gating at the molecular level.

Probably the best solution would be to combine ligand‐ and structure‐based drug design methods. The

negative effect of the similarity between Eag1 and HERG in designing selective inhibitors can be put to good use

because the number of characterized compounds with HERG activity is significantly higher than for any other

off‐target in drug development. Given the already routine testing of compounds on HERG, these molecule

datasets can be used as a filter for pre‐preparation of a compound library for in silico or high‐throughput
screening purposes. Since compounds with potential HERG inhibition would be excluded before screening, there

would be a higher probability to identify Eag1‐selective hits. Moreover, because of the similarity between the

two channels, compounds with known weak inhibitory activity could be tested for HERG in the search for

compounds that would show greater selectivity toward Eag1. On the other hand, several different pharmaco-

phore models have already been made for HERG channel blockers, mostly based on compounds that bind to PD.

These pharmacophore models can be used in the design of compounds binding not to PD but to VSD or the

cytoplasmic domains.
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The same arguments apply to peptide toxins. Detailed knowledge of both binding sites and mechanism of

action would be needed to design modifications to improve activity and specificity. For the case of antibodies,

where the epitope is identified, we still lack enough knowledge about the mechanism of inhibition of Eag1. The

location of the epitope of the currently available monoclonal antibody, in the PD but far away from the permeation

pathway, makes it unlikely that it acts as an open channel blocker.232 Studies on the mechanism of action can

provide alternative approaches that could be useful also for small molecules and peptides.

The limitation of the expression of Eag1 to the CNS could also be exploited for selectively targeting cancerous

cells without greater effect on the normal tissue. This could be achieved by modifying the physicochemical

properties of molecules so that they could not cross the blood‐brain barrier, therefore reducing the possibility of

unwanted side effects originated by the inhibition of noncancerous cell in the CNS.

It is difficult to compare IC50 values from different experiments and experimental conditions. For example, up

to 200‐fold differences in IC50 measurements for the same compound were observed in patch‐clamp measure-

ments on HERG channels, with voltage protocol, cell system, and temperature having the greatest influence on

IC50 values.234 This is important when evaluating HERG selectivity for potential LQT and TdP risk assessment.

Drug design of new Eag1 inhibitors should consider experimental conditions when measuring HERG potency,

especially for TdP and LQT risk assessment. Inhibition of HERG even in the nanomolar range does not always lead

to LQT or TdP as in the case of verapamil,14 but a cautious approach is still required. Considering that Eag1

inhibitors are being developed for diseases such as cancer, the drug safety threshold, represented as the ratio of

IC50 of HERG inhibition to Cmax
free, could be lowered to at least 1014. This would reduce the likelihood of

overlooking a highly potent Eag1 inhibitor, but due to the higher likelihood of HERG inhibition, a more rigorous in

vivo LQT and TdP risk assessment is therefore required.

5 | CONCLUSION AND OUTLOOK

The relevant role of Eag1 in the pathophysiology of (mainly) cancer and the specificity of its expression pattern

justify the efforts to identify potent and selective inhibitors.

Although it is known that antibodies can provide sufficient specificity, they have shown limited efficacy in vivo.

The current research is mostly coming from the natural toxins, therefore development is oriented to the smaller

biological molecules that target the channel to achieve tumor specificity but use an alternative strategy to attack

the tumor cell. Such approaches display the advantages but also the disadvantages of biological molecules, like the

lower permeability, consequently a limited choice of application modes as well as the possibility of triggering the

adverse immune reaction. Going smaller than this, into the field of small molecule drug discovery, can overcome

the shortcomings of biological agents showing the need for potent Eag1 small molecule inhibitors that can, either

alone or associated with current therapies, improve the outcome of difficult to treat cancers.

The main obstacle in the development of anti‐Eag1 drugs is its remarkable similarity to HERG, which can

explain why the identification of Eag1 inhibitors has up to now led to compounds that block both channels with

similar affinities. The differences in the functional properties between the two channels, together with their

different regulation, open a window for a new generation of compounds that either target a specific functional

property or interfere with downstream pathways. Accurate information of the function and regulation of both

channels, in combination with the structural knowledge achieved in the last years and studied effects of biological

and small molecules, should allow the rational design of Eag1‐targeted anticancer compounds.
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